AP CALCULUS: COMPREHENSIVE REVIEW OF SECTIONS 3.1-3.6



A. Critical Numbers

To find critical numbers of a function  f,

a. Find the derivative of  f.

b. Find the  x-coordinates where the derivative is zero or undefined.

c. The coordinates from (b) are the critical numbers of the function. 

Example: Find the critical numbers of  
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b. 
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c. The critical numbers are 
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Now you try: Find the critical numbers of 
[image: image5.wmf](

)

3

4

4

x

x

x

g

+

=

.

B. Maxima and Minima on Closed Intervals

To find absolute extrema of a function on a closed interval,

a. Find the critical numbers of the function.

b. Evaluate the function at the critical numbers contained within the interval.

c. Evaluate the function at the endpoints of the interval.

d. The smallest value from (b) and (c) is the absolute minimum of the function on the closed interval, and the largest value from (b) and (c) is the absolute maximum. 

Example: Find the absolute extrema of 
[image: image6.wmf](

)

4

2

2

+

=

x

x

x

f

 on the closed interval 
[image: image7.wmf][

]

2

,

1

-

.

a. From (A), we found the critical number of  f  to be 
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c. 
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d. Absolute Minimum: 
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Absolute Maximum: 
[image: image13.wmf]

 EMBED Equation.3  [image: image14.wmf]÷

ø

ö

ç

è

æ

2

1

,

2


Now you try: Find the absolute extrema of 
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C. Rolle’s Theorem

If all three of the following conditions of a function  f  are satisfied,

a. 
[image: image17.wmf]f

 is continuous on 
[image: image18.wmf][

]

b

a

,



b. 
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 is differentiable on 
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c. 
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Then Rolle’s Theorem states there must be at least one value  c, 
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Example: Explain why Rolle’s Theorem does not apply to 
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Rolle’s Theorem does not apply to  f  on the closed interval since  f  is discontinuous at 
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Now you try: Explain why Rolle’s Theorem does not apply to 
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Example: Verify Rolle’s Theorem for 
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a. 
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 is continuous on 
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b. 
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 is differentiable on 
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c. 
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Now you try: Verify Rolle’s Theorem for 
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D. The Mean Value Theorem

If both of the following conditions of a function  
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 are satisfied, 

a. f  is continuous on 
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b. f  is differentiable on 
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Then the Mean Value Theorem states that there exists at least one value of  c, 
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Example: Verify that the Mean Value Theorem applies to 
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a. f  is continuous on 
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b. f  is differentiable on 
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Now you try: Verify the Mean Value Theorem for 
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E. Increasing and Decreasing Functions
To find where a function is increasing or decreasing, 

a. Calculate the derivative of the function.

b. Determine the intervals on which the derivative is positive. 

c. Determine the intervals on which the derivative is negative.

d. The function is increasing on the intervals from (b), and decreasing on the intervals from (c). In other words, a function is increasing when its derivative is positive and decreasing when its derivative is negative. 

Example: Determine the interval(s) of increase and the interval(s) of decrease of the function 
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a. From (A), we know the derivative of  f  is 
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b. 
[image: image66.wmf](

)

x

f

'

 is positive on 
[image: image67.wmf](

)

¥

,

0

.

c. 
[image: image68.wmf](

)

x

f

'

 is negative on 
[image: image69.wmf](

)

0

.

¥

-


d. Increasing 
[image: image70.wmf](

)

¥

,

0

, Decreasing 
[image: image71.wmf](

)

0

,

¥

-


Now you try: Determine the interval(s) of increase and the interval(s) of decrease of the function 
[image: image72.wmf](

)

3

4

4

x

x

x

g

+

=

.

F. Relative Extrema

A function  f  has a relative maximum at  
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c. The sign of 
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[image: image77.wmf]c

x

=

. 

A function  f  has a relative minimum at 
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c. The sign of 
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First Derivative Test: If a function  f is defined at 
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Example: Determine all relative extrema of the function 
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a. From (A), we know that 
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 has a critical number at 
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b. From (A), we also know that 
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c. From (E), we know that the sign of 
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Now you try: Determine all relative extrema of the function 
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G. Concavity

A function is concave up on an open interval if it is above all of its tangent lines on that interval. A function is concave down on an open interval if it is below all of its tangent lines on that interval. Visually, they appear as “smiley” faces and “frownie” faces:



A function is concave up where its second derivative is positive. 
A function is concave down where its second derivative is negative.  

Example: Determine the intervals of concavity of 
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 so  f  is concave up on 
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 is concave down on 
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Now you try: Determine the intervals of concavity of the function 
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H. Points of Inflection 

A function  f  has a point of inflection at 
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 changes at  c. Think of it as where a function changes from smiley face to frownie face or vice versa: 


To find points of inflection, 

a. Determine the second derivative of a function.

b. Determine where the second derivative is zero or undefined.

c. If the sign of  
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 changes at the values from (b) and  f  exists at the values from (b), then  f  has points of inflection at the values from (b). 

Now you try: Determine all points of inflection of 
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I. The Second Derivative Test

Let  
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a. If 
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b. If 
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c. If 
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must be used. 

Example: Use the Second Derivative Test to determine the extrema of 
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Relative Maximum: 
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Now you try: Use the second derivative test to find the relative extrema of 
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J. Limits at Infinity
To determine an infinite limit, 

a. Divide both the numerator and the denominator by the highest power in the denominator. 

b. Evaluate the limit.

Example: Evaluate 
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Shortcut: If 
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  is a rational function,


a. 
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c. 
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Now you try: Evaluate:
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K. Asymptotes

A function has a horizontal asymptote at  
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A function has a vertical asymptote at 
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A function will have a slant asymptote if the degree of the numerator exceeds the degree of the denominator by one. Use polynomial long division to find this asymptote. 

Now you try: Find all asymptotes of 
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Final: Use the information from this review to produce a detailed graph of 
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